VERSION 18.0.0
APRIL 2023
702P09005

Xerox® FreeFlow® VI
eCompose Software
Dispatch SDK

User Guide

Xerox

© 2023 Xerox Corporation. All rights reserved. Xerox®, FreeFlow®, and VIPP® are trademarks of Xerox Corporation in
the United States and/or other countries. Other company trademarks are acknowledged as follows:

Adobe PDFL - Adobe PDF Library Copyright © 1987-2021 Adobe Systems Incorporated.
Adobe PDF Converted - Adobe PDF Converter Library Copyright © 2021 Adobe Systems Incorporated.

Adobe®, the Adobe logo, Acrobat®, the Acrobat logo, Acrobat Reader®, Distiller®, Adobe PDF JobReady™, InDesign®,
PostScript®, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated
in the United States and/or other countries. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is
used as a product trademark for Adobe Systems’ implementation of the PostScript language interpreter, and other
Adobe products. Copyright 1987 - 2021 Adobe Systems Incorporated and its licensors. All rights reserved. Includes
Adobe® PDF Libraries and Adobe Normalizer technology.

Intel®, Pentium®, Centrino®, and Xeon® are registered trademarks of Intel Corporation. Intel Core™ Duo is a
trademark of Intel Corporation.

Intelligent Mail® is a registered trademark of the United States Postal Service.

Macintosh®, Mac®, OS X®, and macOS® are registered trademarks of Apple, Inc,, registered in the United States and
other countries. Elements of Apple’s Technical User Documentation used by permission from Apple, Inc.

Novell® and NetWare® are registered trademarks of Novell, Inc. in the United States and other countries. Oracle® is
a registered trademark of Oracle Corporation Redwood City, California.

PANTONE" and other Pantone Inc. trademarks are the property of Pantone Inc. All rights reserved.

QR Code™ is a trademark of Denso Wave Incorporated in Japan and/or other countries. TIFF® is a registered
trademark of Aldus Corporation.

The Graphics Interchange Format®© is the Copyright property of CompuServe Incorporated. GIFSM is a Service
Mark of CompuServe Incorporated.

Windows®, Windows® 10, Windows® 11, Windows Server® 2016, Windows Server® 2019, Windows Server® 2022,
OneDrive®, and Internet Explorer are trademarks of Microsoft Corporation; Microsoft® and MS-DOS® are registered
trademarks of Microsoft Corporation.

All other product names and services mentioned in this publication are trademarks or registered trademarks of their
respective companies. They are used throughout this publication for the benefit of those companies, and are not
intended to convey endorsement or other affiliation with the publication.

Companies, names, and data used in examples herein are fictitious unless otherwise noted.

While every care has been taken in the preparation of this material, no liability will be accepted by Xerox
Corporation arising out of any inaccuracies or omissions.

Changes are periodically made to this document. Changes, technical inaccuracies, and typographical errors will be
corrected in subsequent editions.

Produced in the United States of America.

BR38523

Contents

| (gl eTe (¥ ot [o] s F PSP UPTP 5
VI SUiIte CUSTOMIET FOTUM ...ttt et e e e e eaaes 6
What is the VIeCD Software Development Kit?...........oouiiiiiii e 7
WETE 10 DEGIN ..ot 8
DOCUMENEALION OVEIVIEW ...\ttt et e e et e et e e e e e e e et e e e e e e e e s eeaneaes 9

270 Tel (o] {10 T P PSPPIt [N
VIECD DA FLOW .. ovtiie i e 13
VIeCD INCOMINGFOIAEIS FIlLEIS ... et et e e 14
Eligibility: CommandTemplates, RuleVars, and the DispatchRule FieldNameccoooiiiiiiiiiiiine 15

(aTe (o (PP PPN 15
RULBVIATS. .. ettt e e et e e e e e e aaa e 16
Reserved Index File Field NGME.... ... 16
AULORUN FIILEIS ..ottt e e e e e eans 17
0TI o T TSP 18
VIECD JOD LIfECYCLE .. e e 19
INELIGIDLE. ..o 20
RULE CONFLICE ... et 20
o] o] (< PPN 20
PO AING e e 20
QT =] | S PR 20
el e e 21
(@o] 03] o] (<] PP 21

Examples, Libraries, and ULILIESoiini et 23

e Ta] o (< PP PTPPRPTNt 24
FOTWAIA <. e e 24
(61110) APPSR 25
Y= A< PRSP RPP 25
SOIVET ettt et e e 25
(0]15<] s To B PP RPP 26
(0] 157151 o] o T PR 26
Lo TSP TPTPURN: 26

o] o 1S T PP PP PPRPTRNt 27
(V20T T o o PSPPI 27
VEDASESSION ..t e e e e e e e aeas 27

IS e e e 28

VIeC Dispatch IN-CircUit EMUIGEOT.ienii e e 29
USING VEDRAICE © .ot e et e e e e e e e e 30

(U o LI I PRSP 30
USE COSE 2.ttt et ettt e e aan s 31
(U o LI BT R PPN 32

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 3

Contents

USE CASE L.ttt e 34
Using vtpdice iN BACh MOouni e 36

4 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Introduction

This chapter contains:

VI Suite CUSTOMET FOTUM ...ttt 6
What is the VIeCD Software Development Kit?...........oooiiiii e 7
WRETE 10 DEGIN .o 8
DOCUMENEALION OVEIVIEWouiiiii e 9

This guide is for software developers who use the FreeFlow® VI eCompose Dispatch (VIeCD) Software Development
Kit (SDK) to integrate post-processing applications with the VI eCompose (VIeC) software. To use the VI eCompose
software, it is recommended that you are familiar with the following software or platforms:

e Xerox® VIPP® Language
e VIeC Dispatch software
e C, C++ programming language, or the platform applications

It is recommended that users have experience with the VieC Dispatch software. Refer to the example in the
FreeFlow® VI eCompose User Guide and the VI eCompose Workshop.

An overview of VIeC internals, which includes a description of VIeCD data flow and state, is presented in this
document. This information is intended to supplement the VIeCD example application and reference material
contained in the FreeFlow® VI eCompose User Guide.

f Note: All modules in the FreeFlow® VI Suite software product names have changed since the FreeFlow VI
Suite 10.0 Release.

LEGACY PRODUCT NAME NEW PRODUCT NAME

FreeFlow VI Interpreter FreeFlow VI Compose

FreeFlow VI Interpreter Open Edition FreeFlow VI Compose Open Edition
FreeFlow VI Designer FreeFlow VI Design Pro

FreeFlow VI PDF Originator FreeFlow VI eCompose

FreeFlow VIPP® Pro Publisher FreeFlow VI Design Express

All other products not mentioned in the list keep the same name used in the previous FreeFlow VI Suite
Release.

References to the VIPP® language, commands, and variable information format remain unchanged.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 5

Introduction

VI Suite Customer Forum

Xerox hosts a Community Support Forum. The VI Suite Customer forum is now part of this larger support forum,
allowing you to post and review information about Xerox products and services all from one location. Please take a
minute to log into this customer forum community: http://vippsupport.xerox.com.

6 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

http://vippsupport.xerox.com/

Introduction

What is the VIeCD Software Development Kit?

The VIeCD SDK consists of a collection of examples and starting points, such as source code, utilities, and libraries,
which can be used to integrate VIeCD with other workflows. Most of the code provided is in C (with the single
exception of the olsession example, which is in C++). One API (Application Programmer’s Interface), the dispatch
rule wrapper library (vtpdwrap), is presented in the class definition in the file vtpdwrap.h.

Reference documentation in HTML and Adobe PDF format is also provided. Documents in HTML format were
extracted from the VIeCD SDK source code, then cross-referenced and indexed, and can be found in the /vipodsdk/
docs directory of the VIeCD SDK distribution media. In addition to the PDF file you are reading, PDF documents in
the form of readme files can be found in each /vipodsdk/apps subdirectory, these PDF files provide instructions for
using the example applications.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 7

Introduction

Where to begin

To use the VIeCD SDK, browse to /vipodsdk/docs/index.html. This file provides the basic information you need to
get started, such as:

A brief introduction to the SDK

Licensing information

Where to get support, and the platforms which support the VIeCD SDK

Building the SDK

Assumptions about the environment and file locations

Background about VIeCD SDK design decisions

How the VIeCD SDK is implemented

Descriptions of the documents and files to review to get started

A brief description of the contents of the VIeCD SDK, including:

— Utilities
— Libraries

— Example Code

— Example VIPP® Applications

— Win32 File Layout

Additionally, the main page, /vipodsdk/docs/index.html, contains the following links:

Data Structures

A page that contains a list of the data structures provided and a brief description
of each data structure. To view complete descriptions of each structure, click the
hypertext on this page.

File List A page that contains a list of all documented files and a brief description of each
file. To view complete descriptions of each file, clicking the hypertext on this page.

Data Fields An indexed page that contains a list of all documented struct and union fields, and
links to the structures and unions to which the fields belong.

Globals A list of all documented functions, variables, defines, enums, and typedefs with
links to their related documentation.

Examples A list of the examples provided with the SDK, and links to the source code for each.

After you review these files, use this document for background information about, and explanations of, the files and
utilities that make up the VIeCD SDK.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Introduction

Documentation Overview

This user guide provides background information on the VIeCD SDK and the VIeCD In-Circuit Emulator (vtpdice).
The guide is organized as follows:

Background Provides background information on VIeCD and the VIeCD SDK. This

chapter supplements the information in the Freeflow VI eCompose User
Guide, and adds information specific to the VIeCD SDK. The chapter
provides an overview of VIeCD and the following topics:

VIeCD data flow
VIeCD IncomingFolders Filters

Eligibility: CommandTemplates, RuleVars and the DispatchRule
fieldname

VIeCD job lifecycle

Examples, libraries, and utilities Provides descriptions of the files and utilities provided with the VIeCD

SDK, and examples of how to use them.

VIeC Dispatch In-Circuit Emulator Provides an expanded description of the vtpdice utility, and includes

these sections:
Using vtpdice

Using vtpdice in batch mode

For more information about the VIPP® Language, VI Compose, and related modules, refer to the FreeFlow® Variable
Information Suite Documentation. The documentation includes the following guides:

FreeFlow® VI Compose User Guide: Provides the background information required to understand and use VIPP®
and applications. The guide describes the files and utilities provided with the software, the resources necessary
to build VIPP® jobs, and the basics of printing with VIPP®.

VIPP® [anguage Reference Manual: Documents the VIPP® commands, VIPP® programming tips, and error
messages.

FreeFlow® VI eCompose User Guide: Contains information about how to use the VI eCompose software to
create and dispatch Adobe PDF documents, and administer VIeC Web servers remotely.

FreeFlow® VI Design Pro User Guide
VIPP® Manage User Guide
FreeFlow® VI Explorer User Guide

FreeFlow® Variable Information Suite Documentation Glossary and Quick Reference

For information about VIPP® training, contact a Xerox representative.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 9

Introduction

10 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Background

This chapter contains:

VIECD DAL FIOW ...ttt e 13
VIeCD INComMINGFOIAEIS FIlLOrS. ... oot 14
Eligibility: CommandTemplates, RuleVars, and the DispatchRule FieldName..............cooooiiiiii 15
AULORUN FIlEETS ... et 17
0TGPt 18
VIECD JOD LIfECYCLO . ..o 19

VIeC Dispatch software provides a generic dispatch mechanism, which initiates, then monitors VIeC job post-
processing by a customer-specified backend process such as email, fax, or a document repository. In this role, VIeC
Dispatch software is considered middleware, as it mediates between completed VIeC jobs and the specified
backend post-processing software.

To embed parameters and other data specific to post processing into the VIeC job, use the VIPP® BOOKMARK
command.

e Parameters and other data are extracted from the field names and values of the index file generated by VIeC.
e VIeC Dispatch software transfers the parameters and other data to the specified backend software.

o Index files for each job contain the extension .csv.

V1eCD supports workflows that require human intervention, or a hands-off workflow, using the AutoRun feature and
user filters. For example:

e Backends interface with email-disbursement systems that require:
— Human verification or signoff of the VIeC output before the dispatch
— Limitations on the users allowed to initiate the dispatch of such jobs

e Backends interface with a document repository that requires a hands-off workflow. The VIeC-to-VIeCD process
runs without human intervention.

When VIeCD invokes a backend program, the parameters are extracted from a VIeC job index file on a line-by-line
basis. The process spawns a new instance of the backend program as a new subprocess for each invocation. VIeCD
does not allow any direct interaction with the backend program over stdin/stdout during that invocation. The
limitation of the invocation may not be suitable for interfacing with all types of backend programs. Potential
incompatibilities between the VIeC post-processing and VIeCD include:

e Programs that require some form of user or programmatic interaction in the normal mode of operation, such as
a Yes or No response to a file being overwritten.

e Programs that require some form of session state over a set of transactions, such as logging in to a Microsoft
Exchange server to perform email transmissions.

e Backend solutions that involve more than one discrete operation, requiring the invocation of multiple, discrete
post-processing operations. Examples of the operations are concatenation or other combinations of the files
specified in the DataFile Template before submission to one or more backend programs.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 11

Background

VIeCD SDK software contains example code and libraries that can provide the basis for building a shim, wrapper,
proxy, or facade to resolve integration issues. The primary focus of the VIeCD SDK examples is centered on a
separate server application. The server application acts as a session bridge between a simple client shim that is
invoked by VIeCD on an index file line-by-line basis, and the backend program. The backend program can require
human interaction or intervention, session state, or multiple post-processing operations.

An alternative to the client-server approach, for backend programs that do not require session state over a set of
transactions, is to interpose a proxy program between VIeCD and the backend programs. Backend programs are
invoked once for each line in the index file. The proxy assumes the responsibility for interacting with the user if
necessary, and acts in the role of a facade for a collective of discrete backend programs if multiple post-processing
steps are required. The proxy communicates with VIeCD through documented interfaces (retval, stdin/stdout), and
with the backend programs performing the post processing. There are no explicit examples provided with the VIeCD
SDK, however, you can configure the vtpdice utility to act as a proxy between VIeCD and an otherwise V1eCD-
compatible backend program. It is recommended that you review the vtpdice source for possible proxy program
implementation information.

For more information, refer to these sections of the FreeFlow VI eCompose Dispatch SDK User Guide:
e Examples

e Libraries

o Ultilities

e Using vtpdice

e Using vtpdice in batch mode

12 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Background

VIeCD Data Flow
VIPP job

VIeC Backend
invocation: Program

once per
index file ling,

VIeC job:
splitfiles, index

VIeC job: Once per
splitfiles, index invocation:
VieC retval & stdout
Incoming & stderr
Folders

index field

VIeC contents
Dispatch
data files

As VIeCD software interfaces with backend programs, VIeCD periodically inspects the VIeC IncomingFolders
directories that match a specified user filter. The VIeCD software compares the field names and contents of the
first line of each VIeC job index file against a repository of dispatch rules.

Log files

index field
contents

VIeC
‘dispatch’
Directory

filters & rules

e Ifacompleted VIeC job can be associated with a single dispatch rule, the job is considered eligible for dispatch
and becomes a VIeCD job.

e If the VIeCD job is either manually approved for processing, or meets the user-specified criteria for a specified
AutoRun filter, VIeCD sequentially resolves and applies the appropriate dispatch rule against each line of the
VIeC job index file.

In the context of a dispatch rule, each of the lines of the VIeC job index file results in a separate invocation of the
customer-specified backend program, effectively becoming a subtask of the VIeCD job. Sequential execution of
each subtask optionally writes to disk the contents of one or more of the index file line fields, then performs an
invocation of the backend program. As each subtask completes, the retval, stdout, and stderr streams are inspected
in the context of the dispatch rule, to determine if a warning or error has occurred. If a warning or error occurred,
the software determines if subtask processing continues or halts. The results of the subtask processing are
accumulated in a log file in the same directory in which the results of VIeC job processing are stored, typically a
subdirectory of the user Incoming directory.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 13

Background

VIeCD IncomingFolders Filters

VIeCD monitors the VIeC IncomingFolders directory in the context of a specified IncomingFolders filter. The default
setting allows VIeCD to monitor all IncomingFolders for all VIeC users. However, VIeCD can be set to process jobs
for a particular set of users, and/or for a particular set of IncomingFolders, as only the specified IncomingFolders of
the VIeC users that match the specified user filter are considered for VIeCD processing.

14 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Background

Eligibility: CommandTemplates, RuleVars, and the DispatchRule FieldName

VIeC Dispatch determines the eligibility for processing of completed VIeC jobs that match the IncomingFolders
filter. If the VIeC job can be matched to a single dispatch rule, VIeC Dispatch deems the job eligible for processing.
The section of a dispatch rule that determines which back-end program is invoked, and with which parameters, is
the CommandTemplate.

INDEX FILE

To determine eligibility, VIeC Dispatch software inspects the index file field names of each VIeC job, then compares
the fields against each CommandTemplate section of the available dispatch rules.

In Example 1, if no dispatch rule CommandTemplate contains the mailto field, the VIeC job is ineligible because no
dispatch rule can be applied. If the index file field names of a VIeC job are matched with the CommandTemplate
of exactly one dispatch rule, the file is considered eligible.

Example 1

In this example, the following VIeC job index file field names, and single dispatch rule CommandTemplate are:
..,"Pages","FileSequence","mailto"

blat c:\bodytemp.txt -t Smailto

The VIeC job is eligible for VIeCD processing if the dispatch rule in the example is the only one with a
CommandTemplate containing the single mailto field.

Alternately, the VIeC job is ineligible for processing if there is another rule containing the following
CommandTemplate variable information, because more than one dispatch rule can be applied:

splat -x $mailto

Example 2

This example assumes:

e Two VIeC jobs, each containing one of these index file field names:

.., "Pages","FileSequence","mailto"

...,"Pages","FileSequence","mailto", "cc"

e Exactly two dispatch rules, each containing one of the following as the CommandTemplate:
blat c:\bodytemp.txt -t Smailto
blat c:\bodytemp.txt -t Smailto -c $cc

In this example, both VIeC jobs are eligible for processing. V1eCD recognizes that the first VIeC job cannot be used
with the second dispatch rule, because there is no field named cc in the first job index file. The first dispatch rule is
applied for the first VIeC job. VIeCD recognizes that the second VIeC job cannot be used with the first dispatch
rule, because there is no field named cc in the first dispatch rule CommandTemplate. The second dispatch rule is
applied to the second VIeC job.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 15

Background

RULEVARS

In addition to the index file field names defined by a VIeC job, a dispatch rule can define additional fields and
values to apply to the CommandTemplate. A typical requirement for this is a dispatch rule whose
CommandTemplate requires a password to execute. It is not desirable to include the password in the VIeC job. You
can specify additional fields and values in the RuleVar section of the dispatch rule.

Example 3

In this example, the dispatch rule CommandTemplate and the single dispatch rule with the user field present are as
follows:

foo -user Suser —-password $password
...,"Pages","FileSequence", "user"

In this event, the VIeC job is ineligible for processing, because there are no password fields among the index file
field names.

Example 4

The VIeC job in Example 3 becomes eligible for processing when the dispatch rule has a RuleVar entry for the
password field:

password=mypassword

In this event, the password field of the CommandTemplate is supplied by the dispatch rule RuleVar definition.

RESERVED INDEX FILE FIELD NAME

The final mechanism used in VIeC Dispatch for choosing among otherwise ambiguous dispatch rules for a
particular VIeC job, involves the use of a reserved index file field name. If among the index file field names the VIeC
job has the reserved field name DispatchRule, for the first line of the index file, the content of that field is matched
against the rule names of the set of dispatch rules that are ambiguous.

Example 5

Ambiguity is resolved and the dispatch rule is applied to the VIeC job, when a job with the index file field names of
mailto and DispatchRule meets the following conditions:

e The job is compared to the two rules containing blat and splat, described in Example 1, because of the mailto
fieldname.

e The contents of the reserved field name, DispatchRule, for the first line of the index record is SMTP email

e One of the dispatch rules has SMTP email as its dispatch rule name

16 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Background

AutoRun Filters

Once a VIeC job is deemed eligible for processing by VIeCD, it is compared to the currently specified AutoRun filter.
AutoRun filters allow the specification of a particular set of VIeC users and a particular set of IncomingFolders for
those users, to determine which eligible V1eC jobs are automatically processed by VIeCD. The default setting is to
disallow AutoRun for all users, requiring instead that each job be selected manually for processing.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 17

Background

Processing

When VIeC Dispatch processes a VIeC job, it reads the index file for the VIeC job one line at a time, and applies its
field values in the context of the applicable dispatch rule. Each application results in a separate invocation of the
backend program specified in the dispatch rule's CommandTemplate. E ach of these invocations (one for each line
in the V1eC job index file) is considered a subtask of the job.

The following will occur for each line of the index file, until either a halt-on-warning or halt-on-error condition is
detected, or there are no lines left in the index file to process:

e Ifany of the field names are present in the DatafileTemplate section of the dispatch rule, their contents are
written to disk as specified. The file(s) written are considered temporary, and their contents are considered valid
only for the duration of the particular invocation of the backend program specified in the CommandTemplate.

e The field names in the CommandTemplate are then resolved by substituting their values from the RuleVars (if
any) and from the values extracted from the pertinent line of the index file. The result is the command and
parameters intended for the invocation of the backend program. The command and parameters are then
submitted to the operating system for execution as a subprocess of VIeC Dispatch.

e When the subprocess for the backend program completes, VIeCD interprets its retval, stdout and stderr streams
in the context of the pertinent sections of the dispatch rule to determine whether a warning or error situation
has been triggered, and if so whether processing of the remaining lines of the index file should continue.

18 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Background

VIeCD Job Lifecycle

During its lifecycle, a VIeCD job can transition between any of these states:

ineligible
rule conflict
eligible
pending
current
held

complete

These states are reflected in the Current Job and tabbed sections of the main VIeC Dispatch GUI These sections
are described in more detail as follows:

no rule match single-rule

ineligible match

eligible

multi-rule
match

auto-run
match
or
manual
designation

rule
manual
designation

rule conflict

pending

NOTE:

All states except
‘current’ and ‘complete’
transition to ‘ineligible’
upon any rule change. current

success or

warning/error
trigger

or cancel

cancel

complete

resubmit

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 19

Background

INELIGIBLE

All VIeC jobs that make it past the IncomingFolders filter result in the instantiation of a VIeCD job with an initial
state of ineligible, creating the start of the VIeCD job lifecycle. VIeCD jobs entering this state are tested
immediately for eligibility when the first index file record field names are evaluated against the CommandTemplate
and RuleVar of each available dispatch rule.

One (and only one) dispatch rule

The VIeCD job transitions to the eligible state.

More than one dispatch rule

The job transitions to the rule-conflict state.

No dispatch rules

The job remains in the ineligible state.

RULE CONFLICT

Jobs in this state are those that have more than one applicable dispatch rule. Transition out of this state will occur
if:

e The rule to be applied is manually selected.
e Anydispatch rule is changed or added.

In either case, the job will transition back to the ineligible state where it will then be re-evaluated. Once returned to
the ineligible state:

e The job will transition to the eligible state if a dispatch rule was manually selected.
e The job may remain ineligible if no dispatch rules can be applied.

e The job may transition back to rule conflict if more than one applicable dispatch rule remains.

ELIGIBLE

Jobs in this state are eligible for processing but are not yet pending. A job remains in an eligible state until it is
manually selected by the user for processing or meets the criteria of the current AutoRun filter. When the job meets
the AutoRun filter criteria it then automatically transitions to the pending state.

Canceling a job in an eligible state causes it to transition to a complete state with a status of cancel.

PENDING

Jobs in this state will be processed in the order shown in the VIeC Dispatch Pending display, topmost first. The order
of the pending jobs can be changed using the GUL.

Canceling a job in a pending state causes it to transition to a complete state with a status of cancel.

CURRENT

A job in this state is being processed. There can be only one job in this state.

20 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Background

Holding a current job causes it to temporarily suspend processing (in a graceful manner) and move into the held
state.

Canceling a job in a current state causes it to transition to a complete state with a status of cancel.

HELD

A held job has suspended processing. Releasing the job causes it to transition to a pending state to await further
processing.

Canceling a job in a held state causes it to transition to a complete state with a status of cancel.

COMPLETE

This is the end state of the VIeCD job lifecycle. Completed jobs have one of these statuses:

e success
e warning
o failure

e cancel

The resubmit transition is supplied for convenience. Resubmitting a job clears all accumulated state, tracking, etc.,
for that job and returns it to the ineligible state, allowing it to be reprocessed as if it had just come into the system
for the first time.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 21

Background

22 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Examples, Libraries, and Utilities

This chapter contains:

EXAMIPIES. . e e 24
L D OIS e 27
U S e 28

The VIeCD SDK provides examples, libraries, and utilities, which can be used to integrate backend applications with
VI eCompose. Descriptions of these components are provided here.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 23

Examples, Libraries, and Utilities

Examples

These code examples are provided with the VIeCD SDK:

forward

Simple file forwarding for V1eCD.

client

Simple socket client that illustrates connecting to a VIeCD session application.

server

Simple socket server that you can use as the basis for a VIeCD back-end session application.

server2

More sophisticated socket server that you can use as the basis for a VIeCD back-end session application. The
example shows how to use the vtpdsession library.

olsend

Socket client that connects to a Microsoft Outlook session bridge.

olsession

Socket server acting as a VIeCD back-end session bridge to MS Outlook.

wrap

Shows how to use the dispatch rule wrapper library vtpdwrap.

You can find the source for the examples in the src/examples section of the VIeCD SDK distribution. The pre-
compiled binaries for the examples are in the bin section. Sample VIPP® applications that you can use to exercise
the examples are in the apps section.

The examples are described in more detail in the sections that follow.

FORWARD

The most direct way to resolve an incompatibility between VIeCD and a back-end program, is to replace the back-
end program with one more programs that are compatible with VIeCD. For example, a simple use of VIeCD is to
automate the copying of the PDF files from completed VIeC jobs to another location, which is known as job
forwarding. One obvious way to automate job forwarding, is to place an invocation of the Windows command line
utility xcopy in the CommandTemplate of a dispatch rule. However, to copy a file to a new location, xcopy prompts
for confirmation, if copying the file overwrites another file. Prompting is incompatible with VIeCD, because no
interaction with the subprocess can occur over stdin or stdout, and causes VIeCD to hang or time out. Additionally,
the return value from xcopy is not informative if other problems are encountered during processing.

The forward example shows one way to wrap functionality to be more compatible with the VIeCD invocation
environment. The program is not interactive. Instead, the program has command-line arguments that specify
whether to overwrite a file, if a file exists. The return values indicate the following:

24 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Examples, Libraries, and Utilities

0 success
negative values specific usage or environment error
positive return values system error, such as disk full, or permissions error

Understandably, it is practical to replace only the simplest back-end processes in this way.

For instructions on how to use the forward example, refer to /vipodsdk/apps/forward/readme.pdf.

CLIENT

The client example provides a simple shim between VIeCD and a server, in which the client communicates with the
sever over a socket connection. The server is assumed to be up and running before starting the VIeCD job
communication using the client. The client example will communicate with either the server or server2 example
servers.

If the client is called out in the CommandTemplate of a dispatch rule, each time it is invoked or spawned as a
separate process by VIeCD:

e The client establishes a connection with the server and passes to the server the parameters with which it was
invoked.

e The client then waits for the server to provide the return value that represents the status of the server
processing of that particular transaction.

e The return value from the server is passed back to VIeCD by the client as the client return value.

Referto /vipodsdk/apps/client/readme.pdf forinstructions on how to use the client example.

SERVER

This example provides a rudimentary server that communicates with the client example described above. It does
not actually do any work upon receiving a transaction request from a client process, and always returns the same
canned return value to represent the transaction status.

The implementation is intentionally a minimalist one, as the server only bounces back return values to each
incoming client connection. There is no way to signal the server process to exit as it must be manually terminated.
Upon termination the server makes no allowance for the completion of any pending client connections before it
exits. The server shuts down, and lets client connections resolve themselves.

While the server example can be extended to perform useful work and enhanced to be more robust, its main
purpose is to stand in contrast to the server2 example below.

Refer to /vipodsdk/apps/server/readme.pdf for instructions on how to use the server example.

SERVER2

This example is equivalent functionally to the server example above. However, it illustrates how to leverage the
vtpdsession library to produce the same functionality in much less user-level code. The code is also more
robust, as the vtpdsession library implementation is much more conscientious about allowing connected clients
to exit as part of its cleanup procedure.

Refer to /vipodsdk/apps/server2/readme.pdf forinstructions on how to use the server2 example.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 25

Examples, Libraries, and Utilities

OLSEND

Based on the previous client example, o1 send performs in a similar fashion, but in this case as a shim between
V1eCD and the olsession example that follows.

Refer to /vipodsdk/apps/olsend/readme.pdf for instructions on how to use the o1 send example.

OLSESSION

With the server2 example as a starting point, olsession is a server that establishes a login session with Microsoft
Outlook. The olsession server acts as a session bridge, which has the following features:

e Allows VIeCD to interface with a program, in this case Outlook, that can require user interaction. If Outlook is
not already running when the server is started, a login and password are required.

» Benefits from session state. Session state is a login, followed by multiple transactions, then a logout on exit.
e Cannot interact directly with VIeCD because the VIeCD does not have a retval and does not use stdin or stdout.

The olsend client, in combination with the olsession server, provides a functional VIeCD to Outlook solution suitable
for real-world use, similar to how the public-domain blat utility can be used to interface VIeCD with SMTP/POP3
email servers. For more information on the blat utility, refer to http://www.interlog.com/~tcharron/blat. html.

In addition, the olsession implementation demonstrates:

e How to build on the VIeCD SDK client and server2 examples to interface VIeCD with a fairly sophisticated
backend program and in this case it is Microsoft Outlook.

e That the VIeCD SDK components are compatible with C++ programs. The olsession code is C++, linked with the
vtpdsession and OOC libraries, which are written in ANSI C.

e That VIeCD can be integrated with Microsoft applications through their Component Object Model (COM)
interface. Most high-end Microsoft applications have programmatic interfaces that can be accessed through
COM.

For instructions on how to use the olsession example, refer to /vipodsdk/apps/olsession/readme.pdf.

WRAP
The wrap example shows how to use the vtpdwrap library to read, alter, and write a dispatch rule.

This example also shows how to notify VIeCD that a dispatch rule has been programmatically altered. When a
dispatch rule has been added, changed, or deleted from the VIeCD environment, VIeCD must re-evaluate all
completed VIeC jobs and unprocessed VIeCD jobs in terms of their eligibility for VIeCD processing, in the context of
the new rule set. When rule changes are made from within the VIeCD GUI, VIeCD knows to do this automatically
since it was the source of the change. However, when a rule change occurs due to the actions of an external
program, VIeCD must be notified as shown in the wrap example.

Refer to /vipodsdk/apps/wrap/readme.pdf for instructions on how to use the wrap example.

26 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

http://www.interlog.com/~tcharron/blat.html

Examples, Libraries, and Utilities

Libraries

The libraries provided with the VIeCD SDK can be used to generate dispatch rules from within applications or other
front-end processes, and to implement session server code.

VTPDWRAP

vtpdwrap is a wrapper library that can be used to generate, read, alter, or write VIeC dispatch rules. Use of the
vtpdwrap library is strongly encouraged over the direct manipulation of dispatch rules, as it insulates the solution
provider from the effects of any future changes to the underlying dispatch rule file format.

VTPDSESSION

Some of the examples provided with the VIeCD SDK illustrate how to establish a bridge with a back-end process, or
a process that requires some form of state over a set of transactions. These examples are implemented using a
socket-based client/server model. The implementation of the underlying session server code is fairly generic, and
has been extracted into its own library, vtpdsession. This library is used by the server2 and olsend
examples, and can also be used by solution providers if a socket-based approach is appropriate for their session
bridge implementations.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 27

Examples, Libraries, and Utilities

Utilities

For development and integration activities, it is useful to have a way of monitoring the communication between
VIeCD and the back-end program. To support this communication, the VIeCD In-Circuit Emulator (vtpdice) utility is
provided with the VIeCD SDK. vtpdice can be interposed between VIeCD and a back-end program to provide
diagnostic information and automatic fault insertion, to help in hardening during unit testing. vtpdice is a useful

utility, and is an illustrative example of how to interpose a proxy between VIeCD and a back-end program. The full
source code for vtpdice is included with the VIeCD SDK.

For more information, refer to VIeC Dispatch In-Circuit Emulator.

28 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

VIeC Dispatch In-Circuit Emulator

This chapter contains:

USING VEPAICE .ottt 30
Using vtpdice in BALCh MOAE ... oo e 36

The VIeC Dispatch In-Circuit Emulator (vtpdice) is intended to provide a test harness and diagnostic tool for use
during V1eCD back-end plug-in development and integration.

f Note: The VIeC Dispatch In-Circuit Emulator (VIeCDICE) utility is found in the SDK as vtpdice.exe.

vtpdice is intended to be invoked as a back-end process by VIeCD in the same way as a third-party OEM back-end
program is invoked. More specifically, the intent is for VIeCD to invoke vtpdice with the same arguments that
otherwise are passed to an arbitrary target back-end program.

For example, suppose the intent is to target Blat, which is a freeware command-line POP3 email submission tool,
from VIeCD. During development, it can be useful to get a trace of what Blat receives before invoking blat in the
final program. In this case, VIeCD can invoke vtpdice instead of Blat, but with the same arguments as if Blat is
invoked.

Invoking vtpdice can be useful, because you can configure vtpdice to respond in four different ways:

Use Case 1 Log the arguments passed, and return a specified return value to VI1eCD.

Use Case 2 Log the arguments passed, and emit the contents of specified files to either stdout,
stderr, or both, and return a specified return value to VIeCD.

Use Case 3 Track the number of times vtpdice has been invoked, with a normal response as
described in Use Case 2. After a specified number of invocations have been
performed, insert a fault in the response stream and return a specified fault return
value to VIeCD.

Use Case 4 Act as a proxy for the real target backend program, such as blat. In this
configuration, VIeCD calls vtpdice, and vtpdice calls the target program. vtpdice
intercepts and logs the stdout, stderr, and retval of the target program, and feeds
them back to VIeCD.

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 29

VIeC Dispatch In-Circuit Emulator

Using vtpdice
At present vtpdice can be used only on Windows systems.

vtpdice is intended to be transparent with regard to the arguments passed to it, compared to the arguments
potentially passed to a target program. This means that meta-test information and configuration cannot be passed
to vtpdice using the command line of vtpdice. As a consequence:

e Each vtpdice test has its own unique directory.
e Each test directory must contain at a minimum a file named vtpdice. tst.
e vtpdice reads vtpdice. tst for the configuration information of that test run.

o vtpdice appends all logged information to a file vtpdice. log in the test directory, unless an environment
variable vtpdice test log exists. In this case, all logged information is appended to the file specified in
that environment variable.

e After each invocation, vtpdice increments the number of times it has been invoked to the file vtpdice.rct
to keep track of the record count. This is number of times vtpdice has been invoked in the context of that test
directory. vtpdice tracks this number to know when to fault after a particular number of invocations if that is
part of the test invocation. To reset the number of records, delete this file.

Upon invocation, vtpdice examines the contents of the environment variable vtpdice test dir. If that
environment variable exists, it uses the contents as the path of the directory to use for that test run. If that
environment variable does not exist, it looks in its current working directory for a file called vtpdice. ini. If that
file exists, it uses the contents as the path of the test directory. If neither the environment variable nor the
vtpdice.ini file exist, or the test directory specified within them does not exist, the test run is aborted.

If the test directory path is a relative path, it is considered relative to the vtpdice current working directory.

Given a valid test directory path, vtpdice opens and reads the vtpdice. tst file in that directory. If the file does
not exist, the test is aborted.

Use Cases 1-4 are descriptions of how to configure the vtpdice. tst file contents to get the desired test
behavior from vtpdice. For the cases that follow, assume:

o vtpdice.exe is in directory C: \vtpdice

e Atestdirectory C:\vtpdice\test

e Atest configuration file C: \vtpdice\test\vtpdice.tst

e AfileC:\vtpdice\vtpdice. ini that contains the single line:

test

USE CASE 1
Use Case 1 logs the arguments passed, and returns a specified return value to VIeCD.

vtpdice. tst contents:

retvalNormal: 0

Invoke vtpdice:

vtpdice a b ¢

30 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

VIeC Dispatch In-Circuit Emulator

vtpdice. log contents:

Test run #0, time: Fri Jun 13 13:12:23 2003
Invocation argc, argv:

argv([0]: 'vtpdice'
argv[l]: 'a'
argv([2]: 'b'
argv([3]: 'c'

No stdout source file specified, nothing sent to stdout.
No stderr source file specified, nothing sent to stderr.
Value returned: 0

USE CASE 2

Use Case 2 logs the arguments passed, and emits the contents of specified files to either stdout, stderr, or both, as
well as returning a specified return value to VIeCD.

vtpdice. tst contents:

retvalNormal: 0
stdoutSourcePathNormal:stdoutNormal.txt
stderrSourcePathNormal:stderrNormal.txt

Relative paths specified in a vtpdice. tst file are relative to the test directory, not the vtpdice current working
directory. Two files, stdoutNormal.txt and stderrNormal . txt, containing information to be sent to
stdout and stderr as a part of the test, must be in the test directory.

Invoke vtpdice:

vtpdice d e £

vtpdice. log contents:

Test run #0, time: Fri Jun 13 13:12:23 2003
Invocation argc, argv:

argv([0]: 'vtpdice'
argv[1l]: 'd’'
argv([2]: 'e'
argv([3]: 'f'

Contents of file C: \vtpdice\test\stdoutNormal.txt sent to stdout, as follows:

-—-- start stdout stream ---
'Normal' stdout contents goes here...
-—-- end stdout stream ---

Contents of file C: \vtpdice\test\stderrNormal. txt sent to stderr, as follows:

--- start stderr stream ---

'Normal' stderr contents goes here...
--- end stderr stream ---

Value returned: O

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide 31

VIeC Dispatch In-Circuit Emulator

USE CASE 3

Use Case 3 tracks the number of times vtpdice was invoked with a normal response as in Use Case 2. However,
after a specified number of invocations are performed, a fault is inserted in the response stream. The contents of
specified fault files is sent to stdout, stderr, or both, and returns a specified fault-return value to VIeCD. Subsequent
invocations return the normal stdout/stderr/retval behavior.

In this example, vtpdice inserts a fault at record 2, the third record, because vtpdice counts from zero. At the fault,
vtpdice returns a value of -1, and different information on stdout/stderr.

vtpdice. tst contents:

retvalNormal: O
stdoutSourcePathNormal:stdoutNormal. txt
stderrSourcePathNormal:stderrNormal.txt
faultRecord:2

retvalFault:-1
stdoutSourcePathFault:stdoutFault.txt
stderrSourcePathFault:stderrFault.txt

To reset the record count to zero, delete vtpdice.rct, if the parameter exists.
Invoke vtpdice:

Invoke vtpdice four times:

vtpdice g h 1
vtpdice j k 1
vtpdice m n o
vtpdice p g r

vtpdice. log contents:

Test run #0, time: Fri Jun 13 13:12:23 2003

Invocation argc, argv:

argv([0]: 'vtpdice'

argv[1l] 'g'

argv([2]: 'h'
[3]

argv it

Contents of file 'C:\vtpdice\test\stdoutNormal.txt' sent to stdout, as follows:

-—-- start stdout stream ---
'Normal' stdout contents goes here...
-—-- end stdout stream ---

Contents of file 'C:\vtpdice\test\stderrNormal.txt' sent to stderr, as follows:

--—- start stderr stream ---

'Normal' stderr contents goes here...

--- end stderr stream ---

Value returned: 0

Test run #1, time: Fri Jun 13 13:12:23 2003

32 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

VIeC Dispatch In-Circuit Emulator

Invocation argc, argv:

argv([0]: 'vtpdice'
argvi[l]: 'j'
argv([2]: 'k'
argv([3]: '1'

Contents of file 'C:\vtpdice\test\stdoutNormal.txt" sent to stdout, as follows:

--- start stdout stream ---
'Normal' stdout contents goes here...
--- end stdout stream ---

Contents of file 'C:\vtpdice\test\stderrNormal.txt' sentto stderr, as follows:

--—- start stderr stream ---

'Normal' stderr contents goes here...

--- end stderr stream ---

Value returned: 0

Test run #2, time: Fri Jun 13 13:12:23 2003
Invocation argc, argv:

argv([0]: 'vtpdice'
argv[l]: 'm'
argv([2]: 'n'
argv([3]: 'o'

FAULT INSERTED at record #2:

Contents of file 'C:\vtpdice\test\stdoutFault.txt"' sentto stdout, as follows:

--- start stdout stream ---
'Fault' stdout contents goes here...
--- end stdout stream ---

Contents of file 'C:\vtpdice\test\stderrFault.txt' sentto stderr, as follows:

--—- start stderr stream ---

'Fault' stderr contents goes here...

--- end stderr stream ---

Value returned: -1

Test run #3, time: Fri Jun 13 13:12:23 2003
Invocation argc, argv:

argv([0]: 'vtpdice'
argv[1l] 'p
argv([2]: 'qg'
argv[3] 'r'

Contents of file 'C:\vtpdice\test\stdoutNormal.txt"' sent to stdout, as follows:

-—-—- start stdout stream ---
'Normal' stdout contents goes here...
--- end stdout stream ---

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

33

VIeC Dispatch In-Circuit Emulator

Contents of file "C:\vtpdice\test\stderrNormal.txt"' sent to stderr, as follows:

--- start stderr stream ---

'Normal' stderr contents goes here...
-—-- end stderr stream ---

Value returned: O

USE CASE 4

Use Case 4 acts as a proxy for the real target back-end program. In this configuration, VIeCD calls vtpdice, and
vtpdice calls the target program. vtpdice intercepts and logs the target program's stdout, stderr and retval, and also
feeds these back to VIeCD. So to VIeCD, it looks as if the target program was directly invoked and actually
performed the work. In this fashion, vtpdice acts as a proxy or shim that can be inserted between VIeCD and any
target back-end program for tracing or other diagnostic purposes, and perhaps even in the field to capture
information for troubleshooting customer problems.

The VIeCD SDK contains a simple loop-back program that tests this use case. The loop-back program serves as an
example application invoked by vtpdice.

vtpdice. tst contents:

pathToProxyFor:../../../bin/loopback.exe

This path can be either relative or absolute. If relative, it is relative to the test directory, not the vtpdice current
working directory.

Invoke vtpdice:

vtpdice s t u

vtpdice.log contents:

Test run #0, time: Fri Jun 13 13:12:23 2003
Invocation argc, argv:
argv([0]: 'vtpdice'

argv[l]: 's'
argv([2]: 't'
argv([3]: 'u'

Performing as proxy for: 'C:\vtpdice\test\../../../bin/loopback.exe'
Arguments passed:

argv[0]: 'C:\vtpdice\test\../../../bin/loopback.exe'

argv[l]: 's'

argv([2]: 't'

argv([3]: 'u'

--—- start received stdout stream ---

Hello, I am the program located at
'C:\vtpdice\test\../../../bin/loopback.exe".

I was called with 3 arguments, as follows:argv[l]: 's'argv[2]:
't'argv[3]: '"u'End of argument list.

Sending 'Hello, stderr!' to stderr...

And now sending '123' as a return value...bye!

-—-- end received stdout stream ---

34 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

-—-— start received stderr stream ---

Hello, stderr!
-—-— end received stderr stream ---

Value returned: 123

VIeC Dispatch In-Circuit Emulator

Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

35

VIeC Dispatch In-Circuit Emulator

Using vtpdice in Batch Mode

vtpdice can be run in batch mode from the command line. Running in batch mode from the command line allows
you to exercise vtpdice and any specified end-user back-end programs to ensure that the tests themselves perform
as expected before you run live diagnostic jobs through VIeCD. You can use batch mode to perform a make-ready
verification to ensure that the tests are functioning properly before they are invoked by VIeCD and vtpdice.

By setting or adjusting the vtpdice_test_dir and vtpdice_test_log environment variables, you can arrange for a
number of different tests to be run as a batch.

Look for the file vipodsdk/bin/runtests.bat, the result of running the batch test will appear in the file
alltest.log. Examining the batch file, the test directories, located in vipodsdk\src\examples, and the
test directory contents provides details on the use of vtpdice in non-batch mode as well as batch mode.

To run the batch test yourself, change the absolute path for the environment variables to match the vipodsdk
location.

36 Xerox® FreeFlow® VI eCompose Software Dispatch SDK User Guide

Xerox

	User Guide
	Introduction
	VI Suite Customer Forum
	What is the VIeCD Software Development Kit?
	Where to begin
	Documentation Overview

	Background
	VIeCD Data Flow
	VIeCD IncomingFolders Filters
	Eligibility: CommandTemplates, RuleVars, and the DispatchRule FieldName
	Index File
	RuleVars
	Reserved Index File Field Name

	AutoRun Filters
	Processing
	VIeCD Job Lifecycle
	Ineligible
	Rule Conflict
	Eligible
	Pending
	Current
	Held
	Complete

	Examples, Libraries, and Utilities
	Examples
	Forward
	Client
	Server
	Server2
	Olsend
	Olsession
	Wrap

	Libraries
	vtpdwrap
	vtpdsession

	Utilities

	VIeC Dispatch In-Circuit Emulator
	Using vtpdice
	Use Case 1
	Use Case 2
	Use Case 3
	Use Case 4

	Using vtpdice in Batch Mode

